Monatshefte für Chemie 113, 849-853 (1982)

NMR-Untersuchungen an Naturstoffen I. ¹H-NMR-spektroskopische Konformationsanalyse des Elemols

Kurze Mitteilung

Erich Kleinpeter*, Matthias Kretschmer, Phan Tong Son und Manfred Mühlstädt

Sektion Chemie, Karl-Marx-Universität Leipzig, DDR-7010 Leipzig, Deutsche Demokratische Republik

(Eingegangen 18. Februar 1982. Angenommen 5. März 1982)

NMR Investigations on Natural Constituents I. Conformational Analysis of Elemol by 1H-nmr (Short Communication)

The preferential conformation of elemol (1 a) is determined by means of lanthanide induced shifts in the ¹H-nmr spectrum.

(Keywords: Conformation of elemol; 1H -nmr spectroscopy; Lanthanide induced shifts)

Die absolute Konfiguration des aus dem Java-Citronellöl¹ isolierbaren Elemols **1 a** wurde 1964 unabhängig von T. G. Halsall et al.² und S. C. Bhattacharyya et al.³ bestimmt. Hierzu verwendeten die Autoren Methoden chemischer Beweisführung durch Vergleich mit Sesquiterpenen bekannter Konfiguration.

Unter Beachtung der Konformationsenergien vorhandener Substituenten sollte als Vorzugskonformeres **1** b mit axialer angularer Methylgruppe (Isomenthanstruktur)⁴ bzw. axialem allylischem Methinproton⁵ vorliegen. Das Protonenspektrum des Elemols⁶ gestattet hierzu keinerlei Hinweise, da alle diesbezüglich interessanten Ringprotonen im Bereich von 0,9–2,0 ppm als komplexes Multiplett absorbieren, das hinsichtlich indikativer Kopplungen nicht auswertbar ist. Unter Zusatz von paramagnetischem Verschiebungsreagenz [Eu(fod)₃]⁷ gelingt jedoch die Auftrennung des Spektrums, so daß alle Ringprotonen

⁵⁵ Monatshefte für Chemie, Vol. $113/6^{\circ}$ -7

zugeordnet und die Kopplungen gemessen werden können. Über die Karplus-Abhängigkeit⁸ läßt sich die Vorzugskonformation des Elemols klären. Die geminalen Kopplungskonstanten ($J_{\text{gem}} = 12$ —13 Hz) und vieinalen Kopplungskonstanten zwischen den axialen Protonen ($J_{\text{aa}} = 12$ —13 Hz) sind hinreichend von den vieinalen Kopplungskonstanten zwischen a/e- bzw. e/e-Protonen ($J_{\text{a,e}} \sim J_{\text{ee}} = 3,2$ —4,2 Hz) verschieden, so daß bereits das visuelle Kopplungsbild die Vorzugskonformation 1b erfordert.

Die für das gleichmolare Verhältnis Elemol/Eu(fod)₃ aus der Abhängigkeit der chemischen Verschiebungen der einzelnen Protonen von der Eu(fod)₃-Konzentration extrapolierten Lanthanoiden-induzierten-Verschiebungen (LIS)* in $\Delta\delta$ (ppm) waren Ausgangswerte für quantitative Berechnungen nach der *McConnell-Robertson*-Gleichung⁷ mit Hilfe eines speziellen Screening-Verfahrens⁹. Als Maß für die Güte der Übereinstimmung von experimentellen und nach ⁷berechneten LIS-Werten wurde der Übereinstimmungsfaktor R verwendet.

$$R = \left[\frac{\sum (\Delta \exp{--\Delta ber})^2}{\sum (\Delta \exp)^2}\right]^{1/2}$$

Die Geometrie des Elemols wurde durch *Dreiding*-Modelle simuliert und die Protonenkoordinaten mittels einer KOORD-BOX¹⁰ bestimmt.

Wie Tab. 1 zu entnehmen ist, werden die axialen Protonen d, e bzw. f, g etwa gleich stark durch $\operatorname{Eu}(fod)_3$ zusatzverschoben. Aus diesem Grunde kommen als Vorzugskonformationen der $\operatorname{C}(\operatorname{CH}_3)_2\operatorname{OH}$ -Gruppe relativ zum Molekülrest nur solche mit einem effektiven, senkrecht zur Ringebene symmetrischen lanthanoiden-induzierten Zusatzfeld in Betracht. Die nach dem Screening-Verfahren (vgl. Tab. 1) im zu erwartenden Eu-Aufenthaltsbereich für eine anti-Konformation (Abb. 1), eine ekliptische (Abb. 2) und zwei gestaffelte Konformationen (Abb. 3) berechneten Zonen gleichen Übereinstimmungsfaktors R sind als "Contourmaps" dargestellt.

^{*} Zur quantitativen Berechnung wurden die LIS-Werte auf die Protonen H_b relativiert.

Experimentelle relative Verschiebungen und Zuordnung	Ber. für zwei gauche- Konformationen (vgl. Abb. 3)	Ber. für die gestaffelte Konformation (vgl. Abb. 1)	Ber. für die ekliptische Konformation (vgl. Abb. 2)
1,00 (b) 1,14 (c) 0,69 (d) 0,68 (e) 0,29 (f) 0,26 (g) 0,20 (h) 0,20 (i)	$\begin{array}{c} 1,00\\ 1,13\\ 0,66\\ 0,66\\ 0,26\\ 0,26\\ 0,23\\ 0,18\\ \end{array}$	$\begin{array}{c} 1,00\\ 1,16\\ 0,80\\ 0,80\\ 0,36\\ 0,36\\ 0,16\\0,16\end{array}$	$\begin{array}{c} 1,00\\ 1,29\\ 0,55\\ 0,55\\ 0,22\\ 0,22\\ 0,20\\ 0,22\end{array}$
	$R_{\min} = 0.03$ $r_{OEu} = 3.3 \text{ Å}$ $\alpha_{C-OEu} = 169.4^{\circ}$	$R_{\min} = 0.22$ $r_{OEu} = 1.08 \text{ Å}$ $\alpha_{C-OEu} = 158.2^{\circ}$	$R_{\min} = 0.14$ $r_{OEu} = 1.56 \text{ Å}$ $\alpha_{C-OEu} = 169.1^{\circ}$

Abb. 1. "Contourmap" für eine gestaffelte Konformation des Elemols 55*

E. Kleinpeter u. a.:

Abb. 2. "Contourmap" für eine ekliptische Konformation des Elemols

Abb. 3. "Contourmap" berechnet für zwei gestaffelte Konformationen im Elemol

Für die gestaffelten Konformationen in Abb. 3 ist nur die den Substituenten zugewandte gezeichnet, die angegebenen R-Werte sind aber für gemittelte Resultate zwischen beiden gleich wahrscheinlichen gauche-Konformationen berechnet.

Während für die anti- und ekliptischen Konformationen keine vernünftigen Werte berechnet werden, ergibt sich für die gestaffelten Konformationen für einen Abstand $r_{O...Eu} = 3.3$ Å und einen Winkel $\alpha_{C-O...Eu} = 169.4^{\circ}$ ein vorzüglicher Übereinstimmungsfaktor <0.03. Hierdurch wird neben der Bestätigung der Vorzugskonformation des Elemols 1b auch die in Abb. 3 angegebene relative Anordnung der ----C(CH₃)₂OH-Gruppe zum Molekülrest gefunden*.

Experimenteller Teil

Darstellung des Elemols (1)

Elemol wurde aus Java-Citronellöl-Nachlauf durch Fraktionierung unter reduziertem Druck gewonnen und über das p-Nitrobenzoat gereinigt¹¹.

Sdp.₆ 133°, Schmp. 52,5°, $[\alpha]_D$ —5,4° (c = 7,5, CHCl₃); gaschromatographisch rein (Kapillar-GC, 100 m Carbowax 20 M-Säule, 190 °C, FID, Trägergas: N_2).

Entsprechend Lit.³: Schmp. 52–53°, $[\alpha]_D$ –5,82° (c = 3,4, CHCl₃). Das IR-Spektrum ist identisch mit dem in Lit.² angegebenen.

NMR-Spektren

Die Protonen-NMR-Spektren wurden an einem TESLABS487C bei 80 MHz aufgenommen. Lösungsmittel war CDCl₃. Die chemischen Verschiebungen wurden relativ zu internem TMS gemessen.

Dem Chemischen Kombinat Miltitz danken wir für die Überlassung des Citronellöl-Nachlaufs.

Literatur

- ¹ a) Glichitch L. S., Parfums de France 4, 253 (1926). b) Sykora V., Herout V., Pliva J., Sorm F., Collect. Czechoslov. Chem. Comm. 19, 124 (1954).
- ² Halsall T. G., Theobald D. W., Walshaw K. B., J. Chem. Soc. 1964, 1029.
 ³ Wagh A. D., Paknikar S. K., Bhattacharyya S. C., Tetrahedron 20, 2647 (1964).
- ⁴ Thomas A. F., Ozainne M., Helv. Chim. Acta 61, 2874 (1978).
- ⁵ Gopichand Y., Schmitz F. J., Tetrahedron Lett. 1978, 3641.
- ⁶ a) Giannotti C., C. R. Acad. Sci. (Paris), C262, 422 (1966). b) Ganter C., Keller-Wojtkiewicz B., Helv. Chim. Acta 54, 183 (1971).
- ⁷ Sievers R. E., NMR Shift Reagents. New York: Academic Press. 1976.
- ⁸ Karplus M., J. Amer. Chem. Soc. 85, 2870 (1963).
- ⁹ Kornilov M. Ju., persönliche Mitteilung.
- ¹⁰ Kretschmer M., Kleinpeter E., unveröffentlichte Ergebnisse.
- ¹¹ Doll W., Nerdel F., Ber. Schimmel 1940, 46.

^{*} Wobei offenbleibt, ob diese bevorzugte Anordnung wesentlich durch das koordinierende Verschiebungsreagenz Eu(fod)₃ hervorgerufen wird.